

Fighting catheter related/central line associated blood stream infection

Clinical reference & scientific evidence summary

Content overview

Awareness and insights

Introduction

Module 1 "Awareness and insights"	
Introduction	3
Definition of CRBSI/CLABSI	4
Pathogenesis of CRBSI/CLABSI	5
Risk factors, clinical and economic consequences	8
Prevention strategy of CLABSI (guideline abstract)	10
Module 2 "B. Braun solution – non-leaching antimicrobial catheter, Certofix® protect"	12
Mechanism and scope of action	12
Material performance and safety	14

Resuscitation and intensive care of critically ill and injured patients are not possible without the use of intravascular catheters, endotracheal tubes, and numerous other invasive or minimally invasive medical devices. Although lifesaving, implanted artificial materials inevitably bear the risk of bacterial contamination, infection, and harm.¹

Microbial contamination leads to formation of bacterial and fungal biofilms (an aggregate of microorganisms in a matrix of extracellular polymeric substances) on the surface of implanted medical devices.

In addition to mechanical hindrance, device associated biofilms are a primary cause of hospital-acquired (nosocomial) infections that are difficult to eradicate due to the high tolerance of biofilms towards antimicrobial and host defences. ^{2,3}

Definition of CRBSI/CLABSI

Awareness and insights

Pathogenesis of CRBSI/CLABSI

Catheter related blood stream infection, CRBSI:

CRBSI is a clinical definition, used when diagnosing and treating patients, that requires specific laboratory testing that more thoroughly identifies the catheter as the source of the Blood Stream Infection (BSI). It is not typically used for surveillance purposes. It is often problematic to precisely establish if a BSI is a CRBSI due to the clinical needs of the patient (the catheter is not always pulled), limited availability of microbiologic methods (many labs do not use quantitative blood cultures or differential time to positivity), and procedural compliance by direct care personnel (labelling must be accurate).

Simpler definitions are often used for surveillance purposes. For example, CLABSI is a term used by CDC's National Healthcare Safety Network (NHSN) in the USA.

Central line-associated bloodstream infection, CLABSI:

CLABSI is a serious infection that occurs when germs (usually bacteria or viruses) enter the bloodstream through the central line.

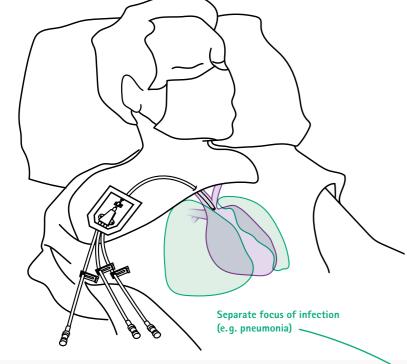
CLABSI is a primary BSI in a patient that had a central line within the 48-hour period before the development of the BSI and is not bloodstream related to an infection at another site. However, since some BSIs are secondary to other sources other than the central line (e.g., pancreatitis, mucositis) that may not be easily recognized, the CLABSI surveillance definition may overestimate the true incidence of CRBSI.⁴

Pathogenesis of CRBSI/CLABSI

During the initial stages of intravascular catheter colonisation, a biofilm is formed that is made up of host proteins and microbes. Bacteria and fungi survive and proliferate within the biofilm, despite host immune defences and therapeutic doses of antimicrobial agents. CRBSIs most commonly emanate from microorganisms colonising the catheter.

CRBSIs are systemic blood infections (bacteraemia) directly attributable to a Central Venous Catheter (CVC).

CRBSI is associated with increased morbidity, mortality and duration of hospital stay. From the patient's perspective, there may be soft tissue pain, systemic symptoms such as pyrexia (prompting investigations including blood tests and X-rays), a need to replace an infected CVC, antibiotic treatment, prolonged hospitalization and (infrequently) death. 5.6,7,8,9,10,11


Pathogens of CRBSI/CLABSI

The most frequent pathogens are

- Staphylococcus epidermidis
- Staphylococcus aureus
- Escherichia coli
- Klebsiella pneumoniae/Klebsiella oxytoca
- Enterococcus faecalis
- Candida species
- Gram-negative bacilli
- Multidrug-resistant germs

The most frequent pathogens of CRBSIs in patients undergoing long term central venous access are coagulase-negative staphylococci, such as St. epidermidis and St. aureus. 12, 13, 14 Also, newer pathogens of CRBSI are coming into the clinically focus as a result of worldwide globalisation, for example Candida auris, multidrug-resistant Acinetobacter baumannii, Leclercia adecarboxylata or pichia species. 15, 16, 17, 18, 19

Routes for catheter contamination

Pathogens migrate down the external surface of the catheter tip Increased skin microorganism density under dressing without frequent decontamination (by hospital staff) Bacteria stick to biofilm and adhere to internal lumen of catheter

Routes for catheter contamination

There are four recognized routes for catheter contamination; these are catheter contamination at insertion site, catheter hub manipulation, contamination by secondary infection and via contaminated infusates. (Fig. 1)

First, skin pathogens at the insertion site can enter the cutaneous catheter tract and migrate along the external surface of the catheter with colonization of the catheter tip. This most commonly happens within the first 7 days after catheter placement and is thought to occur at the time of insertion. Insertion-site contamination can also happen when the skin microorganism density increases underneath the catheter dressing over time if the area is not decontaminated frequently.

Second, intraluminal spread can happen when the catheter hub is contaminated by contact with hands or contaminated fluids or devices. Pathogens gain access to the intraluminal surface of the

device, where they adhere and become incorporated into biofilm, which allows for sustained infection and hematogenous dissemination. This contamination typically occurs more than 7 days after catheter insertion and is related to the care and maintenance of the catheter, as well as the number of times the catheter is manipulated or accessed.

Third, and less commonly, catheters become contaminated by hematogenous spread from a secondary bloodstream infection that develops from another focus of infection (e.g., pneumonia or a urinary tract infection). Bacteria stick to the biofilm that is formed and adhere to the internal lumen of the catheter.

Finally, in rare cases, contaminated infusate taints the catheter (i.e., in outbreaks with contaminated injectable flushes). Knowledge of the pathogenesis of CRBSI has informed the development of strategies for prevention.²⁰

Routes for catheter contamination

- 1 Catheter contaminated at insertion site (by hospital staff)
 - Extraluminal spread
- 2 Catheter hub manipulation (by hospital staff)
 - Intraluminal spread
- 3 Catheter contaminated by secondary infection
 - Intraluminal spread
- 4 Contaminated infusate
 - Intraluminal spread

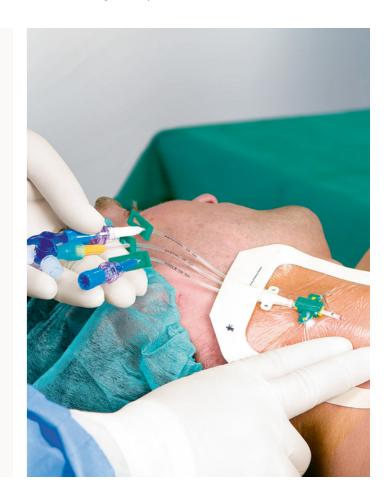


Figure 1 | Routes for catheter contamination. 20

Risk factors & clinical and economic consequences

CLABSI/CRBSI risk factors

Patient factors	Provider factors	Device factors
■ Immunocompromise	■ Emergency catheter insertion	Catheter material
Neutropenia	 Incomplete adherence to aseptic technique 	 Catheter insertion site
■ Burns	 Multiple manipulations of the catheter 	■ Indication of use (e.g., for haemodialysis)
 Malnutrition 	■ Low nurse-to-patient ratio	Multilumen catheter
■ BMI > 40	Failure to remove unnecessary catheter	
Prolonged hospitalization before catheter insertion	■ Total parenteral nutrition (TPN)	
Prematurity in infants	 Chemotherapy treatment 	
 Limited venous access 	 Number of days of catheterization 	

Table 1 | CLABSI / CRBSI Risk factors. 20,21

Clinical and economic consequences

CRBSI are associated with increases in mortality, morbidity, and hospitalization costs. ²² One recent cohort study in Europe (Table 2) revealed that hospital costs directly attributed to the onset of CLABSI were 8,810 € per case. CLABSI had a significant impact on the overall healthcare costs. Knowledge about risk factors and infection control measures for CLABSI prevention

is crucial for best clinical practice. Furthermore, significant differences in the single cost items between CLABSI cases and non-CLABSI controls were found for pharmaceuticals (2,117 $\mbox{\ \ }$ vs. 1,541 $\mbox{\ \ }$; p = 0.001), nurses (7,083 $\mbox{\ \ }$ vs. 6,061 $\mbox{\ \ }$; p = 0.003) and medical products (3,451 $\mbox{\ \ }$ vs. 2,838 $\mbox{\ \ \ }$; p = 0.02). 23,24

	Case patients with CLABSI (n= 79)	Control patients without CLABSI (n = 158)	p-value
Median costs	54,454 (25,634 - 112,697)	48,965 (17,538–78,706)	0.025
Median reimbursements	74,662 (18,331–82,801)	74,662 (17,478–79,745)	0.290
Median loss/profit	-8,888 (-29,993 – 2,522)	1,000 (-11,198 – 9,581)	<0.001
Median costs attributable to CLABSI	8,810 (-2,237 – 3,487)		<0.001
Median loss attributable to CLABSI	-8,171 (-29,090 – 2,396)		<0.001

Table 2 | Costs and reimbursements (in Euro) for case patients with CLABSI and control patients without CLABSI in the matched case-control study – study carried out with hematologic and oncologic patients. ²³

Prevention strategy of CLABSI (SHEA/IDSA/APIC practice recommendation (2022 update)) ²⁵

Quality of evidence: high

Quality of evidence: moderate

Quality of evidence: low

Essential practices

1. Before insertion

1 | Provide easy access to an evidence-based list of indications for CICC use to minimize unnecessary CICC placement

2 | Require education and competency assessment of HCP involved in insertion, care, and maintenance of CICCs about CLABSI prevention

3 | Bathe ICU patients aged > 2 months with a chlorhexidine preparation on a daily basis

2. At insertion

1 | In ICU and non-ICU settings, a facility should have a process in place, such as a checklist, to ensure adherence to infection prevention practices at the time of CICC insertion

Perform hand hygiene prior to catheter insertion or manipulation

3 | The subclavian site is preferred to reduce infectious complications when the catheter is placed in the ICU setting

4 Use an all-inclusive catheter cart or kit

5 | Use ultrasound guidance for catheter insertion

6 | Use maximum sterile barrier precautions during CICC insertion

7 | Use an alcoholic chlorhexidine antiseptic for skin preparation

3. After insertion

1 | Ensure appropriate nurse-to-patient ratio and limit use of float nurses in ICUs

2 | Use chlorhexidine-containing dressings for CICCs in patients over 2 months of age

3 | For non-tunneled CICCs in adults and children, change transparent dressings and perform site care with a chlorhexidine-based antiseptic at least every 7 days or immediately if the dressing is soiled, loose, or damp. Change gauze dressings every 2 days or earlier if the dressing is soiled, loose, or damp

4 | Disinfect catheter hubs, needleless connectors, and injection ports before accessing the catheter

5 | Remove nonessential catheters

6 | Routine replacement of administration sets not used for blood, blood products, or lipid formulations can be performed at intervals up to 7 days

7 | Perform surveillance for CLABSI in ICU and non-ICU settings

CLABSI, central line-associated bloodstream infection.
CICC, centrally inserted central catheter.

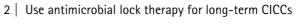
HCP, healthcare personnel.

ICU, intensive care unit.

Quality of evidence: high in adult patients, moderate in pediatric patients

Additional approaches

1 | Use antiseptic- or antimicrobial-impregnated CICCs


3 | Use recombinant tissue plasminogen activating

factor (rt-PA) once weekly after hemodialysis in

patients undergoing hemodialysis through a CICC

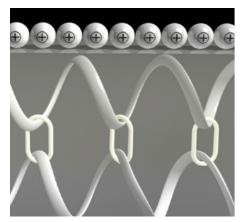
4 | Utilize infusion or vascular access teams for reducing CLABSI rates

5 | Use antimicrobial ointments for hemodialysis catheter insertion sites

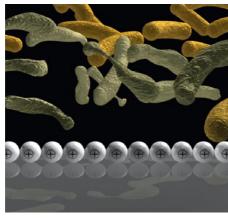
6 | Use an antiseptic-containing hub/connector cap/ port protector to cover connectors

Approaches that should not be considered a routine part of CLABSI prevention

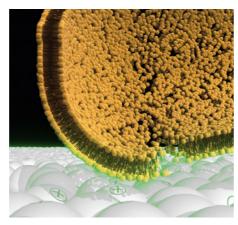
1 Do not use antimicrobial prophylaxis for shortterm or tunneled catheter insertion or while catheters are in situ


2 | Do not routinely replace CICCs or arterial catheters

Unresolved issues


- 1 | Routine use of needleless connectors as a CLABSI prevention strategy before an assessment of risks, benefits, and education regarding proper use
- 2 | Surveillance of other types of catheters (e.g., peripheral arterial or peripheral venous catheters)
- 3 | Standard, non-antimicrobial transparent dressings and CLABSI risk
- 4 | The impact of using chlorhexidine-based products on bacterial resistance to chlorhexidine

- 5 | Sutureless securement
- 6 | Impact of silver zeolite-impregnated umbilical catheters in preterm infants (applicable in countries where it is approved for use in children)
- 7 | Necessity of mechanical disinfection of a catheter hub, needleless connector, and injection port before accessing the catheter when antiseptic-containing caps are being used


Mechanism and scope of action

Ongoing chemical interaction between polarized catheter material and antimicrobial agent.

The antimicrobial inner and outer surface makes fo a non-leaching catheter.

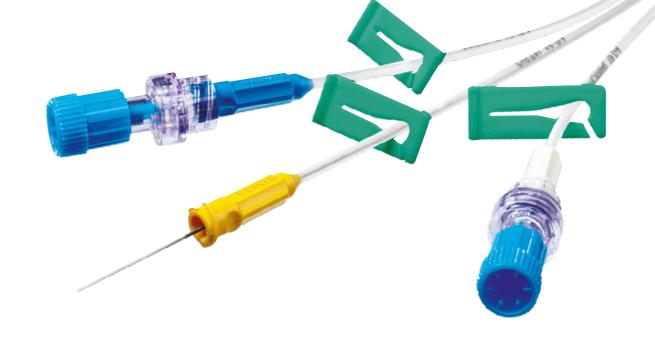
The cell wall structure of microorganisms is destroyed

Scan it to w

Scan it to watch more information in Certofix® protect animation

Mechanism of action

The base material of the CICC Certofix® protect consists of thermoplastic polyurethane. All lumens, including the hub and the outer surface of the catheter, are coated with a tailored copolymer comprising of hydrophilic polyethylene glycol and antiseptic polymeric biguanide side groups, attached to a


methacrylate-based backbone. A comparable polymeric biguanide can be found in some wound irrigation solutions. The copolymer is partially embedded in and bonded to the base material of the catheter with the side groups being freely accessible on the catheter surface.

Mode of action

All catheter lumens and the outer side of the CICC Certofix® protect exhibit a copolymer modified surface, which kills bacteria and fungi as soon as they come into contact with the catheter surface.

In addition, the polymer is having hydrophilic moeities contributing to the haemocompatibility of the catheter. The modified catheter's mode of action is based exclusively on the destruction of bacteria that come into contact with the surface, also termed as contact-kill mechanism. There are no active chemical substances being released into the surrounding tissue or the bloodstream. Hence, a systemic effect on organisms in the blood can be excluded.

Despite the antimicrobial surface, the usual hygienic procedures for inserting a CICC must still be conducted.

Certofix® protect

Scope of action

The Certofix® protect catheter is effective against the most frequently occurring pathogens which can cause a catheter-associated infection:

- Staphylococcus aureus
- Staphylococcus epidermidis (coagulase-negative Staphylococci)
- Methicillin-resistant Staphylococcus aureus (MRSA)
- Enterococcus faecalis
- Escherichia coli
- Pseudomonas aeruginosa
- Klebsiella pneumoniae
- Candida albicans

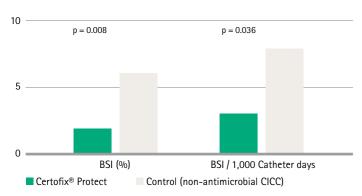
12 1.

Material performance and safety

Reduction of CRBSI

Significant decrease of CRBSI compared to non-antimicrobial CVCs 26

Krikava I, Kolar M, Garajova B, Balik T, Sevcikova A, Roschke I, Sevcik P. The efficacy of a non-leaching antibacterial central venous catheter – a prospective, randomized, double-blind study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2020 Jun;164(2):154–160.


1. Topic

Reduction of CRBSI

2. Design & Method

- The study was conducted in two centers using a prospective, randomized, double-blind and controlled design (680 intensive care patients; a protective CICC (Certofix® protect) or a standard CICC (Certofix®).
- Primary objectives were the rates of catheter colonization and BSI in the two groups.
- Other baseline demographics, APACHE II score, insertion site, location of CICC placement (ICU or theatre), indwelling time and length of ICU stay were comparable for both groups.

3. Results

A clinical study with Certofix® protect has proven (n=616):

- Use of Certofix® protect is associated with significant reduction of blood stream infection (BSI) from 6.5% to 2% and from 8.3 to 3.2/1,000 Catheter days.
- The group using Certofix® protect underwent less antibiotic therapy.⁶

4. Key Findings

The non-leaching antibacterial coating of the protective catheter was effective in reducing the incidence of BSI but not the rate of catheter colonization. However, the incidence of BSI is a better surrogate marker for the risk of developing clinical signs of infection suggesting that use of the non-leaching protective catheter is effective in this regard.

Reduction of CRBSI

Estimation of usage of central venous catheter with antimicrobial coating for prophylaxis of catheter-associated infections ²⁷

Ivanova O., Kuga P., Oparina Y., Popova M., Mushchitskaya I., Lazarev A., Bogomolnyj M. Estimation of usage of central venous catheter with antimicrobial coating for prophylaxis of catheter-associated infections. Bone Marrow Transplantation 2011; 46 (SUPPL. 1): S445-S446.

1. Topic

Reduction of CRBSI

2. Design & Method

- Aim of the study: to estimate the efficiency of Certofix®
 CICCs with antimicrobial coating for patients undergoing
 chemotherapy or bone marrow transplant (BMT); to calculate
 the duration of CICC's usage; to define the influence of CICC's
 lumina on catheter-associated infections (CAI).
- 124 patients (pts) aged 17-48 years with different oncology and hematological diseases were included. 81 pts underwent BMT, 36 pts – chemotherapy, 7 pts – ECP therapy.
- Pts were divided into two groups: group I used CICCs with antimicrobial coating (58 pts) and group II CICCs without antimicrobial coating (66 pts). In all patients the vena subclavia was cannulated with subclavian accession.
 There were no complications of cannulation procedure.
- Assumption of CAI was made in case of fever without site
 of infection or/and growth of microgerms in hemoculture
 of blood. Infections were proved by comparing blood from
 CICC and peripheral vein or by taking a culture of CICC's
 distal part after its removal.

3. Results

- The number of CICC's lumina did not influence CAI.
- The average duration of CICC's usage was 49 days in group I (2-101 days) and 39 days in group II (1-78 days).
- CICCs were removed in 4 pts in group I and in 11 pts in group II because of assumption of infection. Bacteriological improvement of the infection was found in 1 case from group I (0,6%) and in 8 cases from group II (5,2%).
- Infectious agents in group I was St. Epidermidis, in group II St. Aureus, St. Epidermidis, Kl. Pneumoniae, Acinetobacter, Enterobacter, Pseudomonas aeruginosae, Candida.

4. Key Findings

Usage of CICC with antimicrobial coating leads to decreased rates of CAI in patients undergoing BMT and chemotherapy.

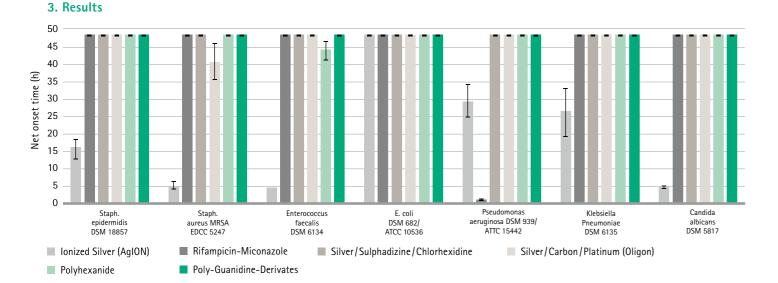
Material performance and safety

Reduction of biofilm formation

Significant germ reduction compared to non-antimicrobial catheter²⁸

Bruenke J, Roschke I, Agarwal S, Riemann T, Greiner A. Quantitative Comparison of the Antimicrobial Efficiency of Leaching versus Nonleaching Polymer Materials. Macromol Biosci. 2016 May;16(5):647-54.

1. Topic


Reduction of biofilm formation

2. Design & Method

- The performance of different antibacterial catheter types was tested in vitro with the proliferation method (Certika test) for their antimicrobial efficacy against typical CRBSI-related gram-positive, gram-negative bacteria, and fungus yeast.
- This test is especially designed to test antimicrobial properties of leachable and non-leachable materials.

4. Key Findings

- This contribution demonstrates that the non-leaching antimicrobial CICCs are equivalent to conventional leaching CICC systems in their antimicrobial performance against gram-positive and gram-negative bacteria, as well as Candida species.
- The use of new non-leaching antimicrobial polymers as shown here for CICCs represents a different mode of action with the aim to prevent infections also with antibiotic-resistant strains and reduced side effects.

- The equal antimicrobial effect of leaching and non-leaching coated antibacterial catheters could be demonstrated. It was also shown that all catheter components of non-leaching antimicrobial catheters possess antimicrobial activity.
- The CICC with ionized silver failed to reduce 3 log scales of Staphylococcus aureus MRSA, Enterococcus faecalis, and Candida albicans, the CICC with rifampicin-miconazole Pseudomonas aeruginosa.
- The CICCs treated with silver/sulphadizine/chlorhexidine, silver/carbon/platinum, polyhexanide, and poly-guanidine derivatives
 (Certofix® protect) demonstrated antimicrobial performance
 >99.99% (log 4 reduction) against all tested germs.

Reduction of biofilm formation

30 days antimicrobial efficacy of non-leaching central venous catheters 29

Brunke J, Riemann T, Roschke I, 30 days antimicrobial efficacy of non-leaching central venous catheters (Poster 063), Critical Care 2016, Volume 20 Suppl 2.

1. Topic

Reduction of biofilm formation

2. Design & Method

- The antimicrobial performance (30 days) of non-leaching antimicrobial CICCs on 7 typical CICC-associated infection bacteria was tested with the "Roll-Out" method (Staphylococcus epidermidis, Staphylococcus aureus MRSA and E. coli, Enterococcus faecalis, Pseudomonas aerugionosa, Klebsiella pneumoniae and Candida albicans).
- After inoculation, washing, incubation at 37 °C, immersion in a minimum medium solution, and a second washing process, the catheter sample was placed on an agar plate and rolled 3 times over the agar plate to transfer surface bound bacteria to the agar medium.
- After overnight incubation (37 °C), bacterial growth was recorded by photography.

3. Results

- The present in-vitro data demonstrate that non-leaching antimicrobial CICCs (e.g. Certofix® protect, B. Braun) exhibit antimicrobial efficacy and prevent biofilm formation from gram-positive, gram-negative bacteria and fungi for up to 30 days.
- The study was performed in direct comparison with a nonantimicrobial control catheter, on which all 7 test strains were able to grow to an established surface biofilm.

O days O days 14 days 30 days Gram-positive bacteria: Staphylococcus aureus (MRSA) Control sample Certofix® protect


The same test results were obtained for:

- Staphylococcus epidermidis, Pseudomonas aeruginosa
- Escherichia coli, Enterococus faecalis
- Klebsiella pneumoniae
- Fungi: Candida albicans

4. Key Findings

This is the first in vitro study to demonstrate antibacterial surface activity and prevention of biofilm formation with antimicrobial, non-leaching CICCs by using the "Roll-Out" method over a period of 30 days. These results demonstrate that non-leaching antimicrobial CICCs can prevent microbial colonization and infection.

Material safety

Mechanical stability/patency of Certofix® protect catheter				
Rate of malfunction:	0%			
Occlusion:	0.6 %	Krikava et al 2020 ²⁶		
Thrombotic complications in general: 3-54 %	0%	-		
	0.67%	Clinical Study Report (data on file)		

Potential complications	
More than 80% of the catheters could be placed without any complications.	Krikava et al 2020 ²⁶ , Spirin et al. 2019 ³⁰
Cannulation rate. Success rate: 99.4%	Krikava et al 2020 ²⁶
The number of CVC's lumina does not influence CRBSI	Ivanova et al. 2011 ²⁷

References

- Satorius, Ashley E.; Szafranski, Jacob; Pyne, Derek; Ganesan, Mahesh; Solomon, Michael J.; Newton, Duane W. et al. (2013): Complement c5a generation by staphylococcal biofilms. In: Shock (Augusta, Ga.) 39 (4), S. 336–342. DOI: 10.1097/ SHK 0h013e31828d9324
- Chauhan, Ashwini; Lebeaux, David; Decante, Benoit; Kriegel, Irene; Escande, Marie-Christine; Ghigo, Jean-Marc; Beloin, Christophe (2012): A rat model of central venous catheter to study establishment of long-term bacterial biofilm and related acute and chronic infections. In: PloS one 7 (5), e37281. DOI: 10.1371/journal. pone.0037281.
- Aybar, Yesim; Ozaras, Resat; Besirli, Kazim; Engin, Ersoy; Karabulut, Ebru; Salihoglu, Tamer et al. (2012): Efficacy of tigecycline and vancomycin in experimental catheter-related Staphylococcus epidermidis infection: microbiological and electron microscopic analysis of biofilm. In: International journal of antimicrobial agents 39 (4), S. 338–342. DOI: 10.1016/j.ijantimicag.2012.01.001.
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Healthcare Quality Promotion (DHQP) (2024). Online verfügbar unter https://www.cdc.gov/infectioncontrol/guidelines/bsi/ background/terminology.html, zuletzt aktualisiert am 22.01.2024, zuletzt geprüft am 22.01.2024.
- Gominet, Marie; Compain, Fabrice; Beloin, Christophe; Lebeaux, David (2017): Central venous catheters and biofilms: where do we stand in 2017? In: APMIS 125 (4), S. 365–375. DOI: 10.1111/apm.12665.
- Chen, Ya-Mei; Dai, Ai-Ping; Shi, Yan; Liu, Zhan-Ju; Gong, Mei-Fang; Yin, Xiao-Bing (2014): Effectiveness of silver-impregnated central venous catheters for preventing catheter-related blood stream infections: a meta-analysis. In: International journal of infectious diseases: IJID: official publication of the International Society for Infectious Diseases 29, S. 279–286. DOI: 10.1016/j.ijid.2014.09.018.
- Vidal, E.; Sharathkumar, A.; Glover, J.; Faustino, E. V. S. (2014): Central venous catheter-related thrombosis and thromboprophylaxis in children: a systematic review and meta-analysis. In: Journal of thrombosis and haemostasis: JTH 12 (7), S. 1096–1109. DOI: 10.1111/ith.12598.
- 8. Wang, H.; Huang, T.; Jing, J.; Jin, J.; Wang, P.; Yang, M. et al. (2010): Effectiveness of different central venous catheters for catheter-related infections: a network meta-analysis. In: The Journal of hospital infection 76 (1), S. 1–11. DOI: 10.1016/j. jhin.2010.04.025.
- Gilbert, Ruth E.; Harden, Melissa (2008): Effectiveness of impregnated central venous catheters for catheter related blood stream infection: a systematic review. In: Current opinion in infectious diseases 21 (3). S. 235–245. DOI: 10.1097/QC0.0b013e3282ffd6e0.
- Hockenhull, J. C.; Dwan, K.; Boland, A.; Smith, G.; Bagust, A.; Dündar, Y. et al. (Hg.) (2008): NIHR Health Technology Assessment programme: Executive Summaries: NIHR Journals Library
- 11. Ramritu, Prabha; Halton, Kate; Collignon, Peter; Cook, David; Fraenkel, David; Battistutta, Diana et al. (2008): A systematic review comparing the relative effectiveness of antimicrobial-coated catheters in intensive care units. In: American journal of infection control 36 (2), S. 104–117. DOI: 10.1016/j.ajic.2007.02.012.
- Casimero, Charnete; Ruddock, Todd; Hegarty, Catherine; Barber, Robert; Devine, Amy; Davis, James (2020): Minimising Blood Stream Infection: Developing New Materials for Intravascular Catheters. In: Medicines (Basel, Switzerland) 7 (9). DOI: 10.3390/ medicines7090049.
- 13. Takaya, Saho; Hayakawa, Kayoko; Matsunaga, Nobuaki; Moriyama, Yuki; Katanami, Yuichi; Tajima, Taichi et al. (2020): Surveillance systems for healthcare-associated infection in high and upper-middle income countries: A scoping review. In: Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy 26 (5), S. 429–437. DOI: 10.1016/j.jiac.2020.01.001.
- 14. Londero, Marcos Rech; Zanrosso, Crisley Dossin; Corso, Leandro Luis; Michelin, Lessandra; Soldera, Jonathan (2019): Catheter-related infection due to Papiliotrema laurentii in an oncologic patient: Case report and systematic review. In: The Brazilian journal of infectious diseases: an official publication of the Brazilian Society of Infectious Diseases 23 (6), S. 451–461. DOI: 10.1016/j.bjid.2019.10.005.

- 15. Mollaschi EMG et al. (2022): Catheter-related blood stream infection caused by Millerozyma farinosa in an immunocompetent patient: a case report and a brief review of the literature. In: New Microbiol. (Apr;45(2)), S. 142–147. Online verfügbar unter https://newmicrobiologica.org/wp-content/uploads/2022/06/MICRO_2_2022_3.2_SHORT_Cavanna_496N277_142-147-1.pdf, zuletzt geprüft am 04.02.2024.
- Chandra, Prashant; V, Rajesh; M, Surulivelrajan; Cs, Shastry; Mk, Unnikrishnan (2022): Multidrug-resistant Acinetobacter baumannii infections: looming threat in the Indian clinical setting. In: Expert review of anti-infective therapy 20 (5), S. 721–732. DOI: 10.1080/14787210.2022.2016393.
- Dewaele, Klaas; Frans, Johan; Smismans, Annick; Ho, Erwin; Tollens, Tim; Lagrou, Katrien (2020): First case of Candida auris infection in Belgium in a surgical patient from Kuwait. In: Acta clinica Belgica 75 (3), S. 221–228. DOI: 10.1080/17843286.2018.1555114.
- 18. Kanno, Yoshiaki; Wakabayashi, Yoshitaka; Ikeda, Mahoko; Tatsuno, Keita; Misawa, Yoshiki; Sato, Tomoaki et al. (2017): Catheter-related bloodstream infection caused by Kodamaea ohmeri: A case report and literature review. In: Journal of infection and chemotherapy: official journal of the Japan Society of Chemotherapy 23 (6), S. 410–414. DOI: 10.1016/j.jiac.2017.01.003.
- Forrester, Joseph Derek; Adams, Josh; Sawyer, Robert G. (2012): Leclercia adecarboxylata bacteremia in a trauma patient: case report and review of the literature. In: Surgical infections 13 (1), S. 63–66. DOI: 10.1089/sur.2010.093.
- O'Grady, Naomi P. (2023): Prevention of Central Line-Associated Bloodstream Infections. In: The New England journal of medicine 389 (12), S. 1121–1131. DOI: 10.1056/ NEJMra2213296.
- 21. Lafuente Cabrero, Elisabeth; Terradas Robledo, Roser; Civit Cuñado, Anna; García Sardelli, Diana; Hidalgo López, Carlota; Giro Formatger, Dolors et al. (2023): Risk factors of catheter- associated bloodstream infection: Systematic review and meta-analysis. In: PloS one 18 (3), e0282290. DOI: 10.1371/journal.pone.0282290.
- 22. Yousif A, Jamal MA, Raad I. Biofilm-based central line-associated bloodstream infections. Adv Exp Med Biol. 2015; 830:157-79.
- Baier, Claas; Linke, Lena; Eder, Matthias; Schwab, Frank; Chaberny, Iris Freya; Vonberg, Ralf-Peter; Ebadi, Ella (2020): Incidence, risk factors and healthcare costs of central line-associated nosocomial bloodstream infections in hematologic and oncologic patients. In: PloS one 15 (1), e0227772, DOI: 10.1371/journal.pone.0227772.
- 24. Results | Agency for Healthcare Research and Quality (2024). Online verfügbar unter https://www.ahrq.gov/hai/pfp/haccost2017-results.html, zuletzt aktualisiert am 04.02.2024, zuletzt geprüft am 04.02.2024.
- Buetti, Niccolò; Marschall, Jonas; Drees, Marci; Fakih, Mohamad G.; Hadaway, Lynn; Maragakis, Lisa L. et al. (2022): Strategies to prevent central line-associated bloodstream infections in acute-care hospitals: 2022 Update. In: Infection control and hospital epidemiology 43 (5), S. 553–569. DOI: 10.1017/ice.2022.87.
- Krikava I, Kolar M, Garajova B, Balik T, Sevcikova A, Roschke I, Sevcik P. The efficacy
 of a non-leaching antibacterial central venous catheter a prospective, randomized,
 double-blind study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2020
 Jun;164(2):154-160.
- Ivanova O., Kuga P., Oparina Y., Popova M., Mushchitskaya I., Lazarev A., Bogomolnyj M. Estimation of usage of central venous catheter with antimicrobial coating for prophylaxis of catheter-associated infections. Bone Marrow Transplantation 2011; 46 (SUPPL. 1): S445-S446.
- Bruenke, Joerg; Roschke, Ingolf; Agarwal, Seema; Riemann, Thomas; Greiner, Andreas (2016): Quantitative Comparison of the Antimicrobial Efficiency of Leaching versus Nonleaching Polymer Materials. In: Macromolecular bioscience 16 (5), S. 647–654. DOI: 10.1002/mabi.201500266.
- 29. Brunke J, Riemann T, Roschke I, 30 days antimicrobial efficacy of non-leaching central venous catheters (Poster 063), Critical Care 2016, Volume 20 Suppl 2.
- Spirin M., Galstyan G.M., Drokov M.Yu., Kuzmina I.A., Klyasova G.A., Parovichnikova E.N., Savchenko V.G. Provision of central venous access during allogeneic haematopoietic stem cell transplantation. Gematologiva i Transfusiologiva 2019: 64(4): 396-411.